Связаться с нами
Компания: Отлично Интегрированная система с ограниченной
Контактное лицо: Элла Цай
Адрес: RM 2501 JIEJIA СТРОИТЕЛЬСТВО FUTIAN ШЭНЬЧЖЭНЬ 518031, Китай
E-mail: [email protected][email protected]
Skype: sales009-EIS
Телефон: 0086-755-23611101
Факс: 0086-755-61679009-109
Связаться с предприятием
Домой > Новости > Company News > Nanusens solves MEMS inertial .....

Nanusens solves MEMS inertial sensor stitching problem

  • Автор:Ella Cai
  • Отпустите на:2017-08-03
Nanusens, the three year-old Barcelona sensor company, says  its CMOS nano-sensor technology has solved the problem of stiction in MEMS inertial sensors.

This mass moves when there is an acceleration and the movement is detected by the mass acting as one electrode and the change in capacitance is measured relative to a second fixed electrode.

However, if there is a large movement such as from a shock or collision, the mass goes beyond the normal range of travelling and touches a surface enclosing the sensor where it ‘sticks’ due to the attractive forces and stops working.

This can be countered by having stronger springs but this reduces the sensitivity of the sensor. A solution to increase the sensitivity could be to increase the mass but this results in a greater surface area for the mass and so, unfortunately, more attractive forces.

The approach used by Nanusens is to reduce the sensor design by an order of magnitude from Micro ElectroMechanical Systems (MEMS) with linear feature sizes of 1-2um to Nano ElectroMechanical Systems (NEMS) where the features are 0.3um.

This reduces the attractive forces significantly as the surface area reduction is in two dimensions, i.e. almost two orders of magnitude reduction.

Reducing the proof mass could result in decreased sensitivity except this is offset by reducing the gap between it and the fixed electrode.

The size reduction also means that the energy stored on the proof mass when it hits the surface in case of a shock, it is much less and the travelling gap is also small. A shock with less energy is also easier to detach.

“Therefore, by reducing all the dimensions of the device, we keep the sensitivity and we increase the reliability,” says  Montanyà, “in fact, we have such a gain in reliability, that we can increase sensitivity and still have a very reliable device.”

The new nano-sensors are made using standard CMOS processes and mask techniques. The Inter Metal Dielectric (IMD) is etched away through the pad openings in the passivation layer using vapour HF (vHF) to create the nano-sensor structures.

The holes are then sealed and the chip packaged as necessary. As only standard CMOS processes are used, and the sensors can be directly integrated with active circuitry as required, the sensors can potentially have high yields similar to CMOS devices.

Nanusens has perfected this CMOS nano-sensor technology over the past year based on developments that the key staff had done when working at Baolab Microsystems, which closed in 2014. It was the success of this previous work that has enabled Nanusens to partner with GloFo.